Abstract

We find by the wavelet transform that the classical plane light wave of linear polarization can be decomposed into a series of discrete Morlet wavelets. In the theoretical frame, the energy of the classical light wave becomes discrete; interestingly, the discretization is consistent with the energy division of P portions in Planck radiation theory, where P is an integer. It is shown that the changeable energy of a basic plane light wave packet or wave train is H 0k = np 0k ω (n = 1, 2, 3, … k = | k |), with discrete wavelet structure parameter n, wave vector k and idler frequency ω, and a constant p 0k . The wave-particle duality from the Mach--Zehnder interference of single photons is simulated by using random basic plane light wave packets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.