Abstract

We present a numerical method for computing transitional flows as described by the BGK equation of gas kinetic theory. Using the minimum entropy principle to define a discrete equilibrium function, a discrete velocity model of this equation is proposed. This model, like the continuous one, ensures positivity of solutions, conservation of moments, and dissipation of entropy. The discrete velocity model is then discretized in space and time by an explicit finite volume scheme which is proved to satisfy the previous properties. A linearized implicit scheme is then derived to efficiently compute steady-states; this method is then verified with several test cases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.