Abstract

With the help of hyper-ideal circle pattern theory, we develop a discrete version of the classical uniformization theorems for closed polyhedral surfaces with non-positive curvature and for surfaces represented as finite branched covers over the Riemann sphere. We show that in these cases discrete uniformization via hyper-ideal circle patterns always exists and is unique. We also propose a numerical algorithm, utilizing convex optimization, that constructs the desired discrete uniformization.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.