Abstract

Tutte's spring embedding theorem states that, for a three-connected planar graph, if the outer face of the graph is fixed as the complement of some convex region in the plane, and all other vertices are placed at the mass center of their neighbors, then this results in a unique embedding, and this embedding is planar. It also follows fairly quickly that this embedding minimizes the sum of squared edge lengths, conditional on the embedding of the outer face. However, it is not at all clear how to embed this outer face. We consider the minimization problem of embedding this outer face, up to some normalization, so that the sum of squared edge lengths is minimized. In this work, we show the connection between this optimization problem and the Schur complement of the graph Laplacian with respect to the interior vertices. We prove a number of discrete trace theorems, and, using these new results, show the spectral equivalence of this Schur complement with the boundary Laplacian to the one-half power for a large class of graphs. Using this result, we give theoretical guarantees for this optimization problem, which motivates an algorithm to embed the outer face of a spring embedding.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.