Abstract

In many industrial applications, complex mechanical systems can often be described by multibody systems (MBS) that interact with electrical, flowing, elastic structures, and other subsystems. Efficient, precise dynamic analysis for such coupled mechanical systems has become a research focus in the field of MBS dynamics. In this paper, a coupled self-propelled artillery system (SPAS) is examined as an example, and the discrete time transfer matrix method of MBS and multirate time integration algorithm are used to study the dynamics and cosimulation of coupled mechanical systems. The global error and computational stability of the proposed method are discussed. Finally, the dynamic simulation of a SPAS is given to validate the method. This method does not need the global dynamic equations and has a low-order system matrix, and, therefore, exhibits high computational efficiency. The proposed method has advantages for dynamic design of complex mechanical systems and can be extended to other coupled systems in a straightforward manner.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.