Abstract

A time optimal-based discrete-time sliding mode control (DSMC) scheme with application to hard disk drives (HDDs) is developed in this study. In this approach, an approximate time optimal switching curve is adopted for the time-varying sliding mode design and the controller, which consists of an equivalent part and a discontinuous one, is designed such that the trajectory from any initial point is driven into a sliding region in the vicinity of the switching surface without chattering and thereafter remains inside it. By using the time-varying switching surface, one unified framework for both track seeking and following control is provided and smooth transition from seeking control to track following control is achieved as well. Simulation and experimental studies on the design of controller in HDDs were conducted to illustrate its feasibility and effectiveness. The simulation/experimental results demonstrate that the proposed scheme provides better performance during track seeking than the commonly used discrete-time proximate time-optimal servomechanism (PTOS) and sliding mode proximate time optimal servomechanism (SMPTOS). Moreover, the unified controller achieves better disturbance suppression in track-following than the proportional-integral-differential (PID) control.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.