Abstract
This paper proposes a discrete-time repetitive optimal control of electrically driven robotic manipulators using an uncertainty estimator. The proposed control method can be used for performing repetitive motion, which covers many industrial applications of robotic manipulators. This kind of control law is in the class of torque-based control in which the joint torques are generated by permanent magnet dc motors in the current mode. The motor current is regulated using a proportional-integral controller. The novelty of this paper is a modification in using the discrete-time linear quadratic control for the robot manipulator, which is a nonlinear uncertain system. For this purpose, a novel discrete linear time-variant model is introduced for the robotic system. Then, a time-delay uncertainty estimator is added to the discrete-time linear quadratic control to compensate the nonlinearity and uncertainty associated with the model. The proposed control approach is verified by stability analysis. Simulation results show the superiority of the proposed discrete-time repetitive optimal control over the discrete-time linear quadratic control.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Artificial Intelligence and Data Mining
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.