Abstract

Information freshness in IoT-based status update systems has recently been studied through the Age of Information (AoI) and Peak AoI (PAoI) performance metrics. In this article, we study a discrete-time server arising in multisource IoT systems, which accepts incoming information packets from multiple information sources so as to be forwarded to a remote monitor for status update purposes. Under the assumption of Bernoulli information packet arrivals and a common general discrete phase-type service time distribution across all the sources, we numerically obtain the exact per-source distributions of AoI and PAoI in matrix-geometric form for three different queueing disciplines: 1) nonpreemptive bufferless; 2) preemptive bufferless; and 3) nonpreemptive single buffer with replacement. The proposed numerical algorithm employs the theory of discrete-time Markov chains of quasi-birth-death type and is matrix analytical. Numerical examples are provided to validate the accuracy and effectiveness of the proposed queueing model. We also present a numerical example on the optimum choice of the Bernoulli parameters in a practical IoT system with two sources with diverse AoI requirements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.