Abstract

We investigate the counterparts of random walks in universal quantum computing and their implementation using standard quantum circuits. Quantum walks have been recently well investigated for traversing graphs with certain oracles. We focus our study on traversing a 1D graph, namely a circle, and show how to implement a discrete-time quantum walk in quantum circuits built with universal CNOT and single qubit gates. We review elementary quantum gates and circuit decomposition techniques and propose a generalized version of all CNOT-based circuits of the quantum walk. We simulated these circuits on five different qubits IBM-Q quantum devices. This quantum computer has nonperfect gates based on superconducting qubits, and, therefore, we analyzed the impact of the CNOT errors and CNOT-depth on the fidelity of the circuit.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call