Abstract

In this paper, a computationally effective strategy to obtain multioverlapping controllers via the Inclusion Principle is applied to design discrete‐time state‐feedback multioverlapping LQR controllers for seismic protection of tall buildings. To compute the corresponding control actions, the proposed semidecentralized controllers only require state information from neighboring stories. This particular configuration of information exchange allows introducing a dramatic reduction in the transmission range required for a wireless implementation of the communication system. To investigate the behavior of the proposed semidecentralized multioverlapping controllers, a proper simulation model has been designed. This model includes semiactive actuation devices with limited force capacity, control sampling times consistent with the communication latency, time‐delayed state information, and communication failures. The performance of the proposed multioverlapping controllers has been assessed through numerical simulations of the seismic response of a 20‐story building with positive results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.