Abstract

AbstractIn this paper we consider the discrete‐time mean‐field stochastic linear‐quadratic (MF‐LQ) optimal control problem with indefinite weighting matrices. First, we establish the maximum principle, and by the solvability of mean‐field forward‐backward stochastic difference equations derived from the maximum principle, we characterize the existence of the open‐loop optimal control for the MF‐LQ problem. Then, by virtue of introducing the linear matrix inequalities condition, we obtain the solvability of the generalized difference Riccati equations (GDREs). Moreover, we show that the indefinite MF‐LQ problem is well‐posed if and only if the GDREs are solvable. Finally, a numerical example is used to show the effectiveness of the obtained results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.