Abstract
In this work, the Kalman Filter (KF) and Takagi–Sugeno fuzzy modeling technique are combined to extend the classical Kalman linear state estimation to the nonlinear field. The framework for such extension is given, and in this sense the discrete-time fuzzy Kalman filter (DFKF) is obtained. It will be shown that the fuzzy version gives some advantages when is compared with the Extended Kalman Filter (EKF), which is the most typical extension of the KF to the nonlinear field. The proposed approach provides a significantly smaller processing time than the processing time of the EKF while the mean square error is also reduced. Finally, some examples, such as the Lorenz chaotic attractor and under actuated mechatronic system (pendubot), are used to compare the DFKF and EKF.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.