Abstract

We study a discrete time hedging and pricing problem in a market with liquidity costs. Using Leland’s discrete time replication scheme [Leland, H.E., 1985. Journal of Finance, 1283–1301], we consider a discrete time version of the Black–Scholes model and a delta hedging strategy. We derive a partial differential equation for the option price in the presence of liquidity costs and develop a modified option hedging strategy which depends on the size of the parameter for liquidity risk. We also discuss an analytic method of solving the pricing equation using a series solution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.