Abstract

The main objective of this paper is to solve the position tracking control problem for the permanent magnet linear motor by using the discrete-time fast terminal sliding mode control (SMC) method. Specifically, based on Euler's discretization technique, the approximate discrete-time model is first obtained and analyzed. Then, by introducing a new type of discrete-time fast terminal sliding surface, an improved discrete-time fast SMC method is developed and an equivalent-control-based fast terminal SMC law is subsequently designed. Rigorous analysis is provided to demonstrate that the fast terminal SMC law can offer a higher accuracy than the traditional linear SMC law. Numerical simulations and experimental results are finally performed to demonstrate the effectiveness of the proposed approach and show the advantages of the present discrete-time fast terminal SMC approach over some existing approaches, such as discrete-time linear sliding mode control approach and the PID control method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.