Abstract

This paper investigates the problem of stabilization of nonlinear discrete-time networked control systems (NCSs) with event-triggering communication scheme in the presence of signal transmission delay. A Takagi-Sugeno (T-S) fuzzy model and parallel-distributed compensation (PDC) scheme are first employed to design a nonlinear fuzzy event-triggered controller for the stabilization of nonlinear discrete-time NCSs. The idea of the event-triggering communication scheme (i.e., a soft computation algorithm) under consideration is that the current sensor data is transmitted only when the current sensor data and the previously transmitted one satisfy a certain state-dependent trigger condition. By taking the signal transmission delay into consideration and using delay system approach, a T-S fuzzy delay system model is established to describe the nonlinear discrete-time NCSs with event-triggering communication scheme. Attention is focused on the design of fuzzy event-triggered controller which ensures asymptotic stability of the closed-loop fuzzy systems. Linear matrix inequality- (LMI-) based conditions are formulated for the existence of admissible fuzzy event-triggered controller. If these conditions are feasible, a desired fuzzy event-triggered controller can be readily constructed. A nonlinear mass-spring-damper mechanical system is presented to demonstrate the effectiveness of the proposed method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.