Abstract

ABSTRACT In this paper we consider nonzero-sum discrete-time constrained stochastic games under the expected average payoff criteria. The state space is a countable set, the action spaces of the players are Borel spaces and the cost functions can be possibly unbounded. Under reasonable conditions, we first construct an approximating sequence of the auxiliary constrained stochastic game models and obtain the ergodicity of the approximating transition laws. Then basing on the properties of the invariant probability measures, we introduce a suitable multifunction and show the existence of constrained Nash equilibria for these approximating game models by a fixed point approach. Moreover, we prove the existence of a stationary constrained Nash equilibrium for the original game model via an approximation technique. Furthermore, we use a controlled population system to illustrate our results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.