Abstract

AbstractThis paper presents a discrete time version of the observer‐based adaptive control system for micro‐electro‐mechanical systems gyroscopes, which can be implemented using digital processors. A stochastic analysis of this control algorithm is developed and it shows that the estimates of the angular rate and the fabrication imperfections are biased due to the signal discretization errors in the feedforward control path introduced by the sampler and holder. Thus, a two‐rate discrete time control is proposed as a compromise between the measurement biases and the computational burden imposed on the controller. The convergence analysis of this algorithm is also conducted and an analysis method is developed for determining the trade‐off between the controller sampling frequency and the magnitude of the angular rate estimate biased errors. All convergence and stochastic properties of a continuous time adaptive control are preserved, and this analysis is verified with computer simulations. Copyright © 2005 John Wiley & Sons, Ltd.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call