Abstract

From sensory input to motor action, encoded sensory features flow sequentially along cortical networks for decision-making. Despite numerous studies probing the decision-making process, the subprocess that compares encoded sensory features before making a decision has not been fully elucidated in humans. In this study, we investigated sensory feature comparison by presenting two different tasks (a discrimination task, in which participants made decisions by comparing two sequential tactile stimuli; and a detection task, in which participants responded to the second tactile stimulus in two sequential stimuli) to epilepsy patients while recording electrocorticography (ECoG). By comparing tactile-specific gamma band (30–200 Hz) power between the two tasks, the decision-making process was divided into three subprocesses—categorization, comparison, and decision—consistent with a previous study (Heekeren et al., 2004). These subprocesses occurred sequentially in the dorsolateral prefrontal cortex, premotor cortex, secondary somatosensory cortex, and parietal lobe. Gamma power showed two different patterns of correlation with response time. In the inferior parietal lobule (IPL), there was a negative correlation. This means that as gamma power increased, response time decreased. In the secondary somatosensory cortex (S2), there was a positive correlation. Here, as gamma power increased, response time also increased. These results indicate that the IPL and S2 encode tactile feature comparison differently. Our connectivity analysis showed that the S2 transmitted tactile information to the IPL. Our findings suggest that multiple areas in the parietal lobe encode sensory feature comparison differently before making a decision.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.