Abstract
We argue that in theories of quantum gravity with discrete gauge symmetries, e.g. Zk , the gauge couplings of U(1) gauge symmetries become weak in the limit of large k, as g → k−α with α a positive order 1 coefficient. The conjecture is based on black hole arguments combined with the Weak Gravity Conjecture (or the BPS bound in the supersymmetric setup), and the species bound. We provide explicit examples based on type IIB on AdS5×S5/Zk orbifolds, and M-theory on AdS4×S7/Zk ABJM orbifolds (and their type IIA reductions). We study AdS4 vacua of type IIA on CY orientifold compactifications, and show that the parametric scale separation in certain infinite families is controlled by a discrete Zk symmetry for domain walls. We accordingly propose a refined version of the strong AdS Distance Conjecture, including a parametric dependence on the order of the discrete symmetry for 3-forms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.