Abstract

This paper deals with discrete second order Sturm-Liouville problems in which the parameter that is part of the Sturm-Liouville difference equation also appears linearly in the boundary conditions. An appropriate Green's formula is developed for this problem, which leads to the fact that the eigenvalues are simple, and that they are real under appropriate restrictions. A boundary value problem can be expressed by a system of equations, and finding solutions to a boundary value problem is equivalent to finding the eigenvalues and eigenvectors of the coefficient matrix of a related linear system. Thus, the behavior of eigenvalues and eigenvectors is investigated using techniques in linear algebra, and a linear-algebraic proof is given that the eigenvalues are distinct under appropriate restrictions. The operator is extended to a self-adjoint operator and an expansion theorem is proved.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.