Abstract

AbstractA nonlinear correction technique for finite element methods of advection‐diffusion problems on general triangular meshes is introduced. The classic linear finite element method is modified, and the resulting scheme satisfies discrete strong extremum principle unconditionally, which means that it is unnecessary to impose the well‐known restrictions on diffusion coefficients and geometry of mesh‐cell (e.g., “acute angle” condition), and we need not to perform upwind treatment on the advection term separately. Moreover, numerical example shows that when a discrete scheme does not satisfy the strong extremum principle, even if it maintains the global physical bound, non‐physical numerical oscillations may still occur within local regions where no numerical result is beyond the physical bound. Thus, it is worth to point out that our new nonlinear finite element scheme can avoid non‐physical oscillations around sharp layers in advection‐dominate regions, due to maintaining discrete strong extremum principle. Convergence rates are verified by numerical tests for both diffusion‐dominate and advection‐dominate problems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.