Abstract
The synthesis of discrete multirotaxanes with well-defined structures remains a great challenge. Herein, we present the successful construction of diverse discrete multirotaxanes with well-defined supramolecular metallacycles as cores by a modular approach. Moreover, these novel multirotaxanes featured a stimuli-responsive property that enabled the introduction and removal of the bromide anion by taking advantage of dynamic nature of the supramolecular metallacycle scaffold. Through the combination of rotaxane-containing prefunctionalized building blocks with the corresponding different organoplatinum(II) acceptor building blocks (60, 120, or 180°), diverse discrete multirotaxanes with well-defined metallacycles (rhomboid or hexagon) as cores as well as certain numbers of rotaxane units were successfully obtained quantitatively by means of coordination-driven self-assembly. Furthermore, owing to the existence of a dynamic metallacycle as the supramolecular cores, the resultant multirotaxanes showed anion-induced disassembly and reassembly properties, which allowed for the reversible transformation between multirotaxanes and the corresponding individual rotaxane-containing building blocks. Therefore, this research not only enriches the family of discrete multirotaxanes, but also provides a novel strategy for the construction of "smart" stimuli-responsive multirotaxane systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.