Abstract

Chemical sensing by cell-surface receptors to effect signal transduction is a ubiquitous biological event. Despite extensive structural biochemical study, detailed knowledge of how signal transduction occurs is largely lacking. We report herein a kinetic and structural study, obtained by stopped-flow IR spectroscopy, of the activation of the BlaR1 receptor of the Staphylococcus aureus bacterium by beta-lactam antibiotics. The cell-surface BlaR1 receptor alerts the bacterium to the presence of beta-lactam antibiotics, resulting in expression of the gene for a beta-lactamase enzyme. This enzyme hydrolytically destroys the remaining beta-lactam antibiotics. IR spectroscopic interrogation of the beta-lactam-BlaR1 receptor reaction has allowed the simultaneous measurement of the chemical events of receptor recognition of the beta-lactam and the characterization of the conformational changes in the BlaR1 receptor that result. The key chemical events in beta-lactam recognition are serine acylation and subsequent irreversible decarboxylation of the BlaR1 active site lysine carbamate. Both events are observed by stopped-flow IR kinetics and (13)C isotope-edited IR spectroscopy. The secondary structural changes in the BlaR1 receptor conformation that occur as a consequence of this acylation/decarboxylation are predicted to correlate to the signal transduction event accomplished by this receptor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.