Abstract

Analytical estimation of state-to-state rate constants is carried out for a recently developed discrete state model of chloride ion motion in a CLC chloride channel (Coalson and Cheng, J. Phys. Chem. B 2010, 114, 1424). In the original presentation of this model, the same rate constants were evaluated via three-dimensional Brownian dynamics simulations. The underlying dynamical theory is an appropriate single- or multiparticle three-dimensional Smoluchowski equation. Taking advantage of approximate geometric symmetries (based on the details of the model channel geometry), well-known formulas for state-to-state transition rates are appealed to herein and adapted as necessary to the problem at hand. Rates of ionic influx from a bulk electrolyte reservoir to the nearest binding site within the channel pore are particularly challenging to compute analytically because they reflect multi-ion interactions (as opposed to single-ion dynamics). A simple empirical correction factor is added to the single-ion rate constant formula in this case to account for the saturation of influx rate constants with increasing bulk Cl(-) concentration. Overall, the agreement between all analytically estimated rate constants is within a factor of 2 of those computed via three-dimensional Brownian dynamics simulations, and often better than this. Current-concentration curves obtained using rate constants derived from these two different computational approaches agree to within 25%.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.