Abstract

The Social Spider Algorithm (SSA) was introduced based on the information-sharing foraging strategy of spiders to solve the continuous optimization problems. SSA was shown to have better performance than the other state-of-the-art meta-heuristic algorithms in terms of best-achieved fitness values, scalability, reliability, and convergence speed. By preserving all strengths and outstanding performance of SSA, we propose a novel algorithm named Discrete Social Spider Algorithm (DSSA), for solving discrete optimization problems by making some modifications to the calculation of distance function, construction of follow position, the movement method, and the fitness function of the original SSA. DSSA is employed to solve the symmetric and asymmetric traveling salesman problems. To prove the effectiveness of DSSA, TSPLIB benchmarks are used, and the results have been compared to the results obtained by six different optimization methods: discrete bat algorithm (IBA), genetic algorithm (GA), an island-based distributed genetic algorithm (IDGA), evolutionary simulated annealing (ESA), discrete imperialist competitive algorithm (DICA) and a discrete firefly algorithm (DFA). The simulation results demonstrate that DSSA outperforms the other techniques. The experimental results show that our method is better than other evolutionary algorithms for solving the TSP problems. DSSA can also be used for any other discrete optimization problem, such as routing problems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.