Abstract
This article enhances the discrete singular convolution method for free vibration analysis of non-uniform thin beams with variability in their geometrical and material properties such as thickness, specific volume (inverse of density) and Young’s modulus. The discrete singular convolution method solves the differential equation of motion of a structure with a high accuracy using a small number of discretisation points. The method uses polynomial chaos expansion to express these variabilities simulating uncertainty in a closed form. Non-uniformity is locally provided by changing the cross section and Young’s modulus of the beam along its length. In this context, firstly natural frequencies of deterministic uniform and non-uniform beams are predicted via the discrete singular convolution. These results are compared with finite element calculations and analytical solutions (if available) for the purpose of verification. Next, the uncertainty of the beam because of geometrical and material variabilities is modelled in a global manner by polynomial chaos expansion to predict probability distribution functions of the natural frequencies. Monte Carlo simulations are then performed for validation purpose. Results show that the proposed algorithm of the discrete singular convolution with polynomial chaos expansion is very accurate and also efficient, regarding computation cost, in handling non-uniform beams having material and geometrical variabilities. Therefore, it promises that it can be reliably applied to more complex structures having uncertain parameters.
Accepted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.