Abstract

Vibratory roller compaction is a well-known method in improving the mechanical properties of field rockfills. However, the meso mechanism of rockfill densification under vibratory roller compaction has not been understood clearly. This paper presents a discrete numerical method to simulate the vibratory roller compaction of field rockfills. Firstly, rockfill particles were modeled by irregular and stochastic clusters, which can be breakable. In addition, the segregation of field rockfills was replicated in a practical manner. Then, a new model of the vibratory roller was presented, in which the frame inertia was considered. Finally, the developed method was applied to simulate the vibratory roller compaction of field rockfills in the Shui Buya Project. Results show that (1) the numerical simulations of vibratory roller compaction of field rockfills agree well with the field experiments; thus, the feasibility and rationality of the developed simulation method are verified; (2) the dynamic response of field rockfills under vibratory roller compaction can be predicted by the presented numerical method with calibrated model and parameters; (3) the new roller model with frame inertia considered is much more accurate than the roller models in early studies. Thus, the developed discrete numerical method can be further adopted to explore the meso mechanism of rockfill densification under vibratory roller compaction in the future.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.