Abstract

We describe a chain of unidirectionally coupled adaptive excitable elements slowly driven by a stochastic process from one end and open at the other end, as a minimal toy model of unresolved irreducible uncertainty in a system performing inference through a hierarchical model. Threshold potentials adapt slowly to ensure sensitivity without being wasteful. Activity and energy are released as intermittent avalanches of pulses with a discrete scaling distribution largely independent of the exogenous input form. Subthreshold activities and threshold potentials exhibit Lorentzian temporal spectra, with a power-law range determined by position in the chain. Subthreshold bistability closely resembles empirical measurements of intracellular membrane potential. We suggest that critical cortical cascades emerge from a trade-off between metabolic power consumption and performance requirements in a critical world, and that the temporal scaling patterns of brain electrophysiological recordings ensue from weighted linear combinations of subthreshold activities and pulses from different hierarchy levels.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.