Abstract

We construct a discrete quantum version of the Drinfeld-Sokolov correspondence for the sine-Gordon system. The classical version of this correspondence is a birational Poisson morphism between the phase space of the discrete sine-Gordon system and a Poisson homogeneous space. Under this correspondence, the commuting higher mKdV vector fields correspond to the action of an Abelian Lie algebra. We quantize this picture (1) by quantizing this Poisson homogeneous space, together with the action of the Abelian Lie algebra, (2) by quantizing the sine-Gordon phase space, (3) by computing the quantum analogues of the integrals of motion generating the mKdV vector fields, and (4) by constructing an algebra morphism taking one commuting family of derivations to the other one.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.