Abstract
We demonstrate both theoretically and experimentally that discrete diffraction resonance can be designed, fabricated, and successfully probed in functionalized - guidonic - coupled waveguide arrays. We evidence that double-barrier patterning of the coupling creates wavelength-independent angular tunnel resonance in the transmitted and the reflected intensity of light beams freely propagating in the plane of the array. Transmission peaks obtained are associated with resonant excitation of the engineered array bound supermodes of the functionalized array, in agreement with accurate and practical numerical modeling based on extended coupled-mode theory. The linear operation of the guidonic resonant tunneling double barrier makes up an original resonator for discrete photonics, suitable for all-optical control of light.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.