Abstract

In this paper, we investigate a downlink channel of a large intelligent surface (LIS) communication system. The LIS is equipped with B-bit discrete phase shifts while base station (BS) exploits low-resolution digital-to-analog converters (DACs). Without the knowledge of channel state information (CSI) related to the LIS, we propose a practical phase shift design method, whose computational complexity increases by 2B independent of the number of reflecting elements N. A tight lower bound for the asymptotic rate of the user is obtained in closed form. As N increases, we observe that the asymptotic rate becomes saturated because both the received signal power and the DAC quantization noise increase. Compared to the optimal continuous phase shift design with perfect CSI, our proposed method asymptotically approaches the ideal benchmark performance for moderate to high values of B. The derived results and observations are verified by simulation results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.