Abstract
This study compares three different types of multiple phase models to determine the most appropriate one for predicting the behavior of various types of storm water solids in a rectangular retention chamber. Two Lagrangian frame of coupled and uncoupled particle tracking models based on the interaction between the discrete phase and the continuous phase were tested. The third model was a sediment transport model using the Eulerian frame. This study tested five different storm water solids classified by particle size and settling characteristics. Particle retention efficiency and computational time were considered in determining the most appropriate multiphase model. For the gross solids, the Lagrangian coupled model provided the best agreement with the physical model measurements. The Eulerian frame model matched retention efficiency well for the high density coarse and finer solids. Although the Eulerian frame shows reliable retention prediction for most of the solid types, the Lagrangian coupled model can be an effective alternative requiring significantly reduced computational time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.