Abstract

Gas cyclones are widely used in industries to separate solids from gas stream. It is well known that solids loading will significantly affect the performance of gas cyclones. In this work, a numerical study of the gas‐solid flow in a gas cyclone at different solid loadings is carried out by means of Combined Continuum and Discrete Method (CCDM). In the CCDM, the motion of discrete particles is obtained by Discrete Element Method (DEM) which applies Newton’s laws of motion to every particle and the flow of continuum fluid is described by the local averaged Navier‐Stokes equations that can be solved by the traditional Computational Fluid Dynamics (CFD). The model successfully generated the strands flow pattern of solids that is typical in gas cyclones. The simulated pressure drop under different solid loadings agreed with experimental measurement quantitatively. It is predicted that the reaction force of solids on gas phase caused the decrease of the tangential velocity of gas phase and thus the decrease of pressure drop.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.