Abstract
Gas–solid flow plays a dominant role in the multiphase flow in an ironmaking blast furnace (BF), and has been modelled by different approaches. In the continuum-based approach, the prediction of the solid flow pattern remains difficult due to the existence of the stagnant zone in the BF lower central part. This difficulty has recently been shown to be overcome by discrete particle simulation (DPS). In this work, the DPS is extended to couple with computational fluid dynamics (CFD) to investigate the gas–solid flow within a BF. The results demonstrate that the DPS–CFD approach can generate the stagnant zone without global assumptions or arbitrary treatments. It confirms that increasing gas flow rate can increase the size of the stagnant zone, and in particular changes the solid flow pattern in the furnace shaft. More importantly, microscopic information about BF gas–solid flow, such as flow and force structures that are extremely difficult to obtain in continuum-approach or experiments, can be analyzed to develop better understanding of the effect of gas phase, and the underlying gas–solid flow mechanisms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.