Abstract

To represent smooth geometric shapes by coarse polygonal meshes, visible edges often follow special families of curves on a surface to achieve visually pleasing results. Important examples of such families are principal curvature lines, asymptotic lines or geodesics. In a surprisingly big amount of use-cases, these curves form an orthogonal net. While the condition of orthogonality between smooth curves on a surface is straightforward, the discrete counterpart, namely orthogonal quad meshes, is not. In this paper, we study the definition of discrete orthogonality based on equal diagonal lengths in every quadrilateral. We embed this definition in the theory of discrete differential geometry and highlight its benefits for practical applications. We demonstrate the versatility of this approach by combining discrete orthogonality with other classical constraints known from discrete differential geometry. Orthogonal multi-nets, i.e. meshes where discrete orthogonality holds on any parameter rectangle, receive an in-depth analysis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.