Abstract

Mixing sand or soil with small pieces of tire is common practice in civil engineering applications. Although the properties of the soil are changed, it is environmentally friendly and sometimes economical. Nevertheless, the mechanical behavior of such mixtures is still not fully understood and more numerical investigations are required. This paper presents a novel approach for the modeling of sand–tire mixtures based on the discrete element method. The sand grains are represented by rigid agglomerates whereas the tire grains are represented by deformable agglomerates. The approach considers both grain shape and deformability. The micromechanical parameters of the contact law are calibrated based on experimental results from the literature. The effects of tire content and confining pressure on the stress–strain response are investigated in detail by performing numerical triaxial compression tests. The main results indicate that both strength and stiffness of the samples decrease with increasing tire content. A tire contact of 40% is identified as the boundary between rubber-like and sand-like behavior.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call