Abstract

The numerical simulation method is used to analyze the influence of a unit cell size on the burning rate of a donor–acceptor system. The cell size determines the fragmentation of a combustion wave. It is determined during calculations that, with an increase in the unit cell size, the average burning rate of the sample decreases. The combustion limits of a cellular system with external heat removal from the sample surface are determined: an increase in the unit cell size contributes to expansion of the combustion limits of the sample. The principal possibility of the synthesis in a chemical furnace for the cellular formation of the structure of the reacting system is shown.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.