Abstract
In this paper, we use finite difference methods for solving the Allen–Cahn equation that contains small perturbation parameters and strong nonlinearity. We consider a linearized second-order three-level scheme in time and a second-order finite difference approach in space, and establish discrete boundedness stability in maximum norm: if the initial data are bounded by 1, then the numerical solutions in later times can also be bounded uniformly by 1. It is shown that the main result can be obtained under certain restrictions on the time step.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.