Abstract
Highly advanced technology products are manufactured on the series of equipment having various characteristics and requirements. The deposition process of organic light emitting diode, for example, is performed in chambers for a long manufacturing time, while various product devices belonging to the same family can be processed in sequence before the preventive maintenance schedule or the refill of chemical gas required. The deposition process plays as a bottleneck, and its productivity of the schedule is critical to the upstream low-temperature poly silicon process and the downstream encapsulation and module processes as well. The batch family scheduling problem is formulated using the mixed-integer programming (MIP) in consideration of the family setups, lot sizing, supplementary mask tools requirements, and material exhaustion requirements. It is shown that the planning and scheduling decisions can be made simultaneously in an integrated model, and that it can be implemented in the actual manufacturing line. Through the optimized model analysis, the capacity can be enhanced by 20∼30 % without losing the throughput and demand satisfaction as well.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The International Journal of Advanced Manufacturing Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.