Abstract

AbstractLet be the discrete hypercube equipped with the uniform probability measure . We prove that if is a Banach space of finite cotype and , then every function satisfies the dimension‐free vector‐valued logarithmic Sobolev inequality The finite cotype assumption is necessary for the conclusion to hold. This estimate is the hypercube counterpart of a result of Ledoux (1988) in Gauss space and the optimal vector‐valued version of a deep inequality of Talagrand (1993). As an application, we use such vector‐valued logarithmic Sobolev inequalities to derive new lower bounds for the bi‐Lipschitz distortion of nonlinear quotients of the Hamming cube into Banach spaces with prescribed Rademacher type.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.