Abstract

This paper concerns the mathematical modeling of the motion of a crowd in a non connected bounded domain, based on kinetic and stochastic game theories. The proposed model is a mesoscopic probabilistic approach that retains features obtained from both micro- and macro-scale representations; pedestrian interactions with various obstacles being managed from a probabilistic perspective. A proof of the existence and uniqueness of the proposed mathematical model’s solution is given for large times. A numerical resolution scheme based on the splitting method is implemented and then applied to crowd evacuation in a non connected bounded domain with one rectangular obstacle. The evacuation time of the room is then calculated by our technique, according to the dimensions and position of a square-shaped obstacle, and finally compared to the time obtained by a deterministic approach by means of randomly varying some of its parameters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.