Abstract

This work is devoted to attractive invariant manifolds for nonautonomous difference equations, occurring in the discretization theory for evolution equations. Such invariant sets provide a discrete counterpart to inertial manifolds of dissipative FDEs and evolutionary PDEs. We discuss their essential properties, like smoothness, the existence of an asymptotic phase, normal hyperbolicity and attractivity in a nonautonomous framework of pullback attraction. As application we show that inertial manifolds of the Allen–Cahn and complex Ginzburg–Landau equation persist under discretization. For the Ginzburg–Landau equation we can also estimate the dimension of the inertial manifold. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call