Abstract

Discrete helical modes have been experimentally observed from implosion to explosion in cylindrical, axially magnetized ultrathin foils (Bz = 0.2 – 2.0 T) using visible self-emission and laser shadowgraphy. The striation angle of the helices, ϕ, was found to increase during the implosion and decrease during the explosion, despite the large azimuthal magnetic field (>40 T). These helical striations are interpreted as discrete, non-axisymmetric eigenmodes that persist from implosion to explosion, obeying the simple relation ϕ = m/kR, where m, k, and R are the azimuthal mode number, axial wavenumber, and radius, respectively. Experimentally, we found that (a) there is only one, or at the most two, dominant unstable eigenmode, (b) there does not appear to be a sharp threshold on the axial magnetic field for the emergence of the non-axisymmetric helical modes, and (c) higher axial magnetic fields yield higher azimuthal modes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.