Abstract

The discrete Green’s function (DGF) for convective heat transfer was measured in a fully developed, turbulent pipe flow to test a new technique for simple heat transfer measurement. The 10×10 inverse DGF, G−1, was measured with an element length of approximately one pipe diameter and Reynolds numbers from 30,000 to 100,000 and compared to numerical predictions using a parabolic flow solver called STANTUBE. The advantages of using the DGF method over traditional heat transfer coefficients in predicting the thermal response for flows with nonuniform thermal boundary conditions are also demonstrated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call