Abstract

A model for quantum gravity in one (time) dimension is discussed, based on Regge's discrete formulation of gravity. The nature of exact continuous lattice diffeomorphisms and the implications for a regularized gravitational measure are examined. After introducing a massless scalar field coupled to the edge lengths, the scalar functional integral is performed exactly on a finite lattice, and the ensuing change in the measure is determined. It is found that the renormalization of the cosmological constant due to the scalar field fluctuations vanishes identically in one dimension. A simple decimition renormalization group transformation is performed on the partition function and the results are compared with the exact solution. Finally the properties of the spectrum of the scalar Laplacian are compared with results obtained for a Poissonian distribution of edge lengths.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.