Abstract

The research in Quantum Chaos attempts to uncover the fingerprints of classical chaotic dynamics in the corresponding quantum description. To get to the roots of this problem, various simplified models were proposed and used. Here a very simple model of a random walker on large d-regular graphs, and its quantum analogue are proposed as a paradigm which shares many salient features with realistic models – namely the affinity of the spectral statistics with random matrix theory, the role of cycles and their statistics, and percolation of level sets of the eigenvectors. These concepts will be explained and reviewed with reference to the original publications for further details.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.