Abstract
Digital projections are image intensity sums taken along directed rays that sample whole pixel values at periodic locations along the ray. For 2D square arrays with sides of prime length, the Discrete Radon Transform (DRT) is very efficient at reconstructing digital images from their digital projections. The periodic gaps in digital rays complicate the use of the DRT for efficient reconstruction of tomographic images from real projection data, where there are no gaps along the projection direction. A new approach to bridge this gap problem is to pool DRT digital projections obtained over a variety of prime sized arrays. The digital gaps are then partially filled by a staggered overlap of discrete sample positions to better approximate a continuous projection ray. This paper identifies primes that have similar and distinct DRT pixel sampling patterns for the rays in digital projections. The projections are effectively pooled by combining several images, each reconstructed at a fixed scale, but using projections that are interpolated over different prime sized arrays. The basis for the pooled image reconstruction approach is outlined and we demonstrate the principle of this mechanism works.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.