Abstract

This paper presents the solution of the Schrodinger---Poisson coupled problem for nanoscale electron devices obtained by means of the Discrete Geometric Approach (DGA). The paper illustrates a self-contained description of the DGA method for a Schrodinger---Poisson problem, discusses its implementation and compares the results of the DGA with respect to the ones obtained by the well established Pseudo-spectral (PS) method for two technologically relevant benchmark devices (i.e. a nanowire and a FinFET). Finally, the paper examines the merits of the DGA approach with respect to the Finite Differences (FD) and Finite Elements (FE), that are the most frequently used methods in the electron device community.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.