Abstract
We present a new graph-based method, called discrete geodesic graph (DGG), to compute discrete geodesics in a divide-and-conquer manner. Let M be a manifold triangle mesh with n vertices and ε>0 the given accuracy parameter. Assume the vertices are uniformly distributed on the input mesh. We show that the DGG associated to M has O(nε) edges and the shortest path distances on the graph approximate geodesic distances on M with relative error O(ε). Computational results show that the actual error is less than 0.6ε on common models. Taking advantage of DGG's unique features, we develop a DGG-tailored label-correcting algorithm that computes geodesic distances in empirically linear time. With DGG, we can guarantee the computed distances are true distance metrics, which is highly desired in many applications. We observe that DGG significantly outperforms saddle vertex graph (SVG) – another graph based method for discrete geodesics – in terms of graph size, accuracy control and runtime performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.