Abstract
The objective of this paper is to introduce a new numerical method for neutronic calculation in a reactor core. This method can produce the final finite form of the neutron diffusion equation by classifying the neutronic variables and using two kinds of cell complexes without starting from the conventional differential form of the neutron diffusion equation. The method with linear interpolation produces the same convergence as the linear continuous finite element method. The quadratic interpolation is proven; the convergence order depends on the shape of the dual cell. The maximum convergence order is achieved by choosing the dual cell based on two Gauss' points. The accuracy of the method was examined with a well-known IAEA two-dimensional benchmark problem. The numerical results demonstrate the effectiveness of the new method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.